Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Biomater Funct Mater ; 20: 22808000221119650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975914

RESUMO

A large number of materials with different compositions and shapes have been proposed and studied for the purpose of bone tissue regeneration. Collagen-based materials have shown promising results for this application, with improved physicochemical properties. The aim of the present in vivo animal study was to evaluate and compare two commercially available collagen-based biomaterials for bone regeneration, with these being implanted in circumferential bone defects created in the calvarium of rabbits. Twenty rabbits received bilateral parietal osteotomies, performed with the aid of a 6.5 mm diameter trephine. Two groups were created: the BC group, where the defect was filled with a scaffold composed of 90% bovine bone particles and 10% porcine collagen, and the EG group, where the defect was filled with a scaffold composed of 75% hydroxyapatite particles of bovine origin and 25% bovine collagen. Ten animals were sacrificed at 30 days and another 10 at 45 days after implantation, and the samples were processed and histologically analyzed. In the evaluations of the samples at 30 days, no important differences were found in the results. However, in the samples at 45 days after surgery, the EG group showed better results than the BC group samples, mainly in terms of the amount of bone matrix formation (P < 0.0001) and the volume in area measured in each sample, where the EG group had a value 65% higher than that in the BC group samples. Based on the results obtained, we conclude that the amount of collagen and the particle characteristics present in the composition of the scaffolds can directly influence the amount of neoformation and/or bone regeneration.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Materiais Biocompatíveis/química , Regeneração Óssea , Bovinos , Colágeno/química , Durapatita , Coelhos , Crânio , Suínos
2.
PLoS One ; 15(5): e0233304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407416

RESUMO

OBJECTIVES: The propose was to compare this new implant macrogeometry with a control implant with a conventional macrogeometry. MATERIALS AND METHODS: Eighty-six conical implants were divided in two groups (n = 43 per group): group control (group CON) that were used conical implants with a conventional macrogeometry and, group test (group TEST) that were used implants with the new macrogeometry. The new implant macrogeometry show several circular healing cambers between the threads, distributed in the implant body. Three implants of each group were used to scanning electronic microscopy (SEM) analysis and, other eighty samples (n = 40 per group) were inserted the tibia of ten rabbit (n = 2 per tibia), determined by randomization. The animals were sacrificed (n = 5 per time) at 3-weeks (Time 1) and at 4-weeks after the implantations (Time 2). The biomechanical evaluation proposed was the measurement of the implant stability quotient (ISQ) and the removal torque values (RTv). The microscopical analysis was a histomorphometric measurement of the bone to implant contact (%BIC) and the SEM evaluation of the bone adhered on the removed implants. RESULTS: The results showed that the implants of the group TEST produced a significant enhancement in the osseointegration in comparison with the group CON. The ISQ and RTv tests showed superior values for the group TEST in the both measured times (3- and 4-weeks), with significant differences (p < 0.05). More residual bone in quantity and quality was observed in the samples of the group TEST on the surface of the removed implants. Moreover, the %BIC demonstrated an important increasing for the group TEST in both times, with statistical differences (in Time 1 p = 0.0103 and in Time 2 p < 0.0003). CONCLUSIONS: Then, we can conclude that the alterations in the implant macrogeometry promote several benefits on the osseointegration process.


Assuntos
Implantes Experimentais , Osseointegração , Desenho de Prótese , Animais , Fenômenos Biomecânicos , Microscopia Eletrônica de Varredura , Osseointegração/fisiologia , Coelhos , Distribuição Aleatória , Tíbia/fisiologia , Tíbia/ultraestrutura , Fatores de Tempo , Titânio
3.
Materials (Basel) ; 12(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691075

RESUMO

The aim of the study was to evaluate the chemical composition of crushed, extracted human teeth and the quantity of biomaterial that can be obtained from this process. A total of 100 human teeth, extracted due to trauma, decay, or periodontal disease, were analyzed. After extraction, all the teeth were classified, measured, and weighed on a microscale. The human teeth were crushed immediately using the Smart Dentin Grinder machine (KometaBio Inc., Cresskill, NJ, USA), a device specially designed for this procedure. The human tooth particles obtained were of 300⁻1200 microns, obtained by sieving through a special sorting filter, which divided the material into two compartments. The crushed teeth were weighed on a microscale, and scanning electron microscopy (SEM) evaluation was performed. After processing, 0.25 gr of human teeth produced 1.0 cc of biomaterial. Significant differences in tooth weight were found between the first and second upper molars compared with the lower molars. The chemical composition of the particulate was clearly similar to natural bone. Scanning electron microscopy⁻energy dispersive X-ray (SEM⁻EDX) analysis of the tooth particles obtained mean results of Ca% 23.42 0.34 and P% 9.51 0.11. Pore size distribution curves expressed the interparticle pore range as one small peak at 0.0053 µm. This result is in accordance with helium gas pycnometer findings; the augmented porosity corresponded to interparticle spaces and only 2.533% corresponded to intraparticle porosity. Autogenous tooth particulate biomaterial made from human extracted teeth may be considered a potential material for bone regeneration due to its chemical composition and the quantity obtained. After grinding the teeth, the resulting material increases in quantity by up to three times its original volume, such that two extracted mandibular lateral incisors teeth will provide a sufficient amount of material to fill four empty mandibular alveoli. The tooth particles present intra and extra pores up to 44.48% after pycnometer evaluation in order to increase the blood supply and support slow resorption of the grafted material, which supports healing and replacement resorption to achieve lamellar bone. After SEM⁻EDX evaluation, it appears that calcium and phosphates are still present within the collagen components even after the particle cleaning procedures that are conducted before use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...